3.4.4 \(\int \frac {x^4 (a+b \log (c x^n))}{(d+e x^2)^{5/2}} \, dx\) [304]

Optimal. Leaf size=383 \[ -\frac {b n x}{3 e^2 \sqrt {d+e x^2}}+\frac {4 b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 e^{5/2} \sqrt {d+e x^2}}+\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \text {Li}_2\left (e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 e^{5/2} \sqrt {d+e x^2}} \]

[Out]

-1/3*x^3*(a+b*ln(c*x^n))/e/(e*x^2+d)^(3/2)-1/3*b*n*x/e^2/(e*x^2+d)^(1/2)-x*(a+b*ln(c*x^n))/e^2/(e*x^2+d)^(1/2)
+4/3*b*n*arcsinh(x*e^(1/2)/d^(1/2))*d^(1/2)*(1+e*x^2/d)^(1/2)/e^(5/2)/(e*x^2+d)^(1/2)+1/2*b*n*arcsinh(x*e^(1/2
)/d^(1/2))^2*d^(1/2)*(1+e*x^2/d)^(1/2)/e^(5/2)/(e*x^2+d)^(1/2)-b*n*arcsinh(x*e^(1/2)/d^(1/2))*ln(1-(x*e^(1/2)/
d^(1/2)+(1+e*x^2/d)^(1/2))^2)*d^(1/2)*(1+e*x^2/d)^(1/2)/e^(5/2)/(e*x^2+d)^(1/2)+arcsinh(x*e^(1/2)/d^(1/2))*(a+
b*ln(c*x^n))*d^(1/2)*(1+e*x^2/d)^(1/2)/e^(5/2)/(e*x^2+d)^(1/2)-1/2*b*n*polylog(2,(x*e^(1/2)/d^(1/2)+(1+e*x^2/d
)^(1/2))^2)*d^(1/2)*(1+e*x^2/d)^(1/2)/e^(5/2)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 383, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {2386, 294, 221, 2392, 21, 393, 5775, 3797, 2221, 2317, 2438} \begin {gather*} -\frac {b \sqrt {d} n \sqrt {\frac {e x^2}{d}+1} \text {PolyLog}\left (2,e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 e^{5/2} \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {\frac {e x^2}{d}+1} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}+\frac {b \sqrt {d} n \sqrt {\frac {e x^2}{d}+1} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}+\frac {4 b \sqrt {d} n \sqrt {\frac {e x^2}{d}+1} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {\frac {e x^2}{d}+1} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {b n x}{3 e^2 \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^4*(a + b*Log[c*x^n]))/(d + e*x^2)^(5/2),x]

[Out]

-1/3*(b*n*x)/(e^2*Sqrt[d + e*x^2]) + (4*b*Sqrt[d]*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])/(3*e^(5/
2)*Sqrt[d + e*x^2]) + (b*Sqrt[d]*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(2*e^(5/2)*Sqrt[d + e*x
^2]) - (b*Sqrt[d]*n*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]
)])/(e^(5/2)*Sqrt[d + e*x^2]) - (x^3*(a + b*Log[c*x^n]))/(3*e*(d + e*x^2)^(3/2)) - (x*(a + b*Log[c*x^n]))/(e^2
*Sqrt[d + e*x^2]) + (Sqrt[d]*Sqrt[1 + (e*x^2)/d]*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/(e^(5/2)*Sqr
t[d + e*x^2]) - (b*Sqrt[d]*n*Sqrt[1 + (e*x^2)/d]*PolyLog[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sqrt[d]])])/(2*e^(5/2)*Sq
rt[d + e*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2386

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^IntPart[q
]*((d + e*x^2)^FracPart[q]/(1 + (e/d)*x^2)^FracPart[q]), Int[x^m*(1 + (e/d)*x^2)^q*(a + b*Log[c*x^n]), x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] &&  !(LtQ[m + 2*q, -2] || GtQ[d, 0])

Rule 2392

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3797

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> Simp[(-I)*((
c + d*x)^(m + 1)/(d*(m + 1))), x] + Dist[2*I, Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*
fz*x))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 5775

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Dist[1/b, Subst[Int[x^n*Coth[-a/b + x/b], x],
 x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^{5/2}} \, dx &=\frac {\sqrt {1+\frac {e x^2}{d}} \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )}{\left (1+\frac {e x^2}{d}\right )^{5/2}} \, dx}{d^2 \sqrt {d+e x^2}}\\ &=-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {\left (b n \sqrt {1+\frac {e x^2}{d}}\right ) \int \left (-\frac {d^3 \left (3 d+4 e x^2\right ) \sqrt {1+\frac {e x^2}{d}}}{3 e^2 \left (d+e x^2\right )^2}+\frac {d^{5/2} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{e^{5/2} x}\right ) \, dx}{d^2 \sqrt {d+e x^2}}\\ &=-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {\left (b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (b d n \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {\left (3 d+4 e x^2\right ) \sqrt {1+\frac {e x^2}{d}}}{\left (d+e x^2\right )^2} \, dx}{3 e^2 \sqrt {d+e x^2}}\\ &=-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {\left (b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}}\right ) \text {Subst}\left (\int x \coth (x) \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (b n \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {3 d+4 e x^2}{\left (1+\frac {e x^2}{d}\right )^{3/2}} \, dx}{3 d e^2 \sqrt {d+e x^2}}\\ &=-\frac {b n x}{3 e^2 \sqrt {d+e x^2}}+\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (2 b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}}\right ) \text {Subst}\left (\int \frac {e^{2 x} x}{1-e^{2 x}} \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (4 b n \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {1}{\sqrt {1+\frac {e x^2}{d}}} \, dx}{3 e^2 \sqrt {d+e x^2}}\\ &=-\frac {b n x}{3 e^2 \sqrt {d+e x^2}}+\frac {4 b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 e^{5/2} \sqrt {d+e x^2}}+\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}}\right ) \text {Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right )}{e^{5/2} \sqrt {d+e x^2}}\\ &=-\frac {b n x}{3 e^2 \sqrt {d+e x^2}}+\frac {4 b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 e^{5/2} \sqrt {d+e x^2}}+\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}+\frac {\left (b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 e^{5/2} \sqrt {d+e x^2}}\\ &=-\frac {b n x}{3 e^2 \sqrt {d+e x^2}}+\frac {4 b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 e^{5/2} \sqrt {d+e x^2}}+\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {x^3 \left (a+b \log \left (c x^n\right )\right )}{3 e \left (d+e x^2\right )^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d} \sqrt {1+\frac {e x^2}{d}} \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^{5/2} \sqrt {d+e x^2}}-\frac {b \sqrt {d} n \sqrt {1+\frac {e x^2}{d}} \text {Li}_2\left (e^{2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 e^{5/2} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.57, size = 244, normalized size = 0.64 \begin {gather*} -\frac {b n \sqrt {1+\frac {e x^2}{d}} \left (3 e^{5/2} x^5 \left (d+e x^2\right )^2 \, _3F_2\left (\frac {5}{2},\frac {5}{2},\frac {5}{2};\frac {7}{2},\frac {7}{2};-\frac {e x^2}{d}\right )+25 d^3 \sqrt {e} x \left (3 d+4 e x^2\right ) \sqrt {1+\frac {e x^2}{d}} \log (x)-75 d^{5/2} \left (d+e x^2\right )^2 \sinh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log (x)\right )}{75 d^2 e^{5/2} \left (d+e x^2\right )^{5/2}}-\frac {x \left (3 d+4 e x^2\right ) \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{3 e^2 \left (d+e x^2\right )^{3/2}}+\frac {\left (a-b n \log (x)+b \log \left (c x^n\right )\right ) \log \left (e x+\sqrt {e} \sqrt {d+e x^2}\right )}{e^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^4*(a + b*Log[c*x^n]))/(d + e*x^2)^(5/2),x]

[Out]

-1/75*(b*n*Sqrt[1 + (e*x^2)/d]*(3*e^(5/2)*x^5*(d + e*x^2)^2*HypergeometricPFQ[{5/2, 5/2, 5/2}, {7/2, 7/2}, -((
e*x^2)/d)] + 25*d^3*Sqrt[e]*x*(3*d + 4*e*x^2)*Sqrt[1 + (e*x^2)/d]*Log[x] - 75*d^(5/2)*(d + e*x^2)^2*ArcSinh[(S
qrt[e]*x)/Sqrt[d]]*Log[x]))/(d^2*e^(5/2)*(d + e*x^2)^(5/2)) - (x*(3*d + 4*e*x^2)*(a - b*n*Log[x] + b*Log[c*x^n
]))/(3*e^2*(d + e*x^2)^(3/2)) + ((a - b*n*Log[x] + b*Log[c*x^n])*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]])/e^(5/2)

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {x^{4} \left (a +b \ln \left (c \,x^{n}\right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(a+b*ln(c*x^n))/(e*x^2+d)^(5/2),x)

[Out]

int(x^4*(a+b*ln(c*x^n))/(e*x^2+d)^(5/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*log(c*x^n))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

-1/3*((3*x^2*e^(-1)/(x^2*e + d)^(3/2) + 2*d*e^(-2)/(x^2*e + d)^(3/2))*x - 3*arcsinh(x*e^(1/2)/sqrt(d))*e^(-5/2
) + x*e^(-2)/sqrt(x^2*e + d))*a + b*integrate((x^4*log(c) + x^4*log(x^n))/((x^4*e^2 + 2*d*x^2*e + d^2)*sqrt(x^
2*e + d)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*log(c*x^n))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral((sqrt(x^2*e + d)*b*x^4*log(c*x^n) + sqrt(x^2*e + d)*a*x^4)/(x^6*e^3 + 3*d*x^4*e^2 + 3*d^2*x^2*e + d^3
), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4} \left (a + b \log {\left (c x^{n} \right )}\right )}{\left (d + e x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(a+b*ln(c*x**n))/(e*x**2+d)**(5/2),x)

[Out]

Integral(x**4*(a + b*log(c*x**n))/(d + e*x**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*log(c*x^n))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^4/(x^2*e + d)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*(a + b*log(c*x^n)))/(d + e*x^2)^(5/2),x)

[Out]

int((x^4*(a + b*log(c*x^n)))/(d + e*x^2)^(5/2), x)

________________________________________________________________________________________